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Abstract. In this paper, we present a method for calculated the numerical approximation of
nonlinear Fredholm - Volterra Hammerstein integral equation, which uses the properties of
rationalized Haar wavelets. The main tool for error analysis is the Banach fixed point
theorem. An upper bound for the error was obtained and the order of convergence is
analyzed. An algorithm is presented to compute and illustrate the solutions for some
numerical examples.
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1. Introduction and preliminaries

Due to this, many numerical methods have been developed for finding the
solutions of integral equations. The use of wavelets has come to prominence during
the last two decades. Wavelets can be used as analytical tools for signal processing,
numerical analysis and mathematical modeling. The early works concerning
wavelets were in the 1980s by Morlet , Grossmann , Meyer, Mallat and others. But
in fact, it was the paper of Daubechies [6] in 1988 that caught the attention of the
applied mathematics communities in signal processing, and numerical analysis.
Most of the early works are discussed in[5,12] and [6,7,16]. The goal of the most
modern wavelet researches is to create a set of basis functions and transform them,
which yields an informative and useful description of a function or signal.Various
types of wavelets have been applied for numerical solution of different kinds of
integral equations.

These include Haar, Legendre, trigonometric, CAS, Chebyshev, and Coifman
wavelets. Lepik and Tamme in[10] have applied Haar wavelets to nonlinear
Fredholm integral equations, but their method involves approximation of certain
integrals. The orthogonal set of Haar functions is a group of square waves with

magnitude of +2z,—2z and 0O, for any i = 0,1,...[13,14] . Lynch and Reis [11]
have rationalized the Haar transform by deleting the irrational numbers and
introducing the integral powers of two. This modification results in what is called
the rationalized Haar (RH) transform. The RH transform preserves all the
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properties of the original Haar transform and can be efficiently implemented using
digital pipeline architecture [15]. The corresponding functions are known as RH
functions. The RH functions are composition of only three amplitude +1,-1 and O.
The aim of this work is to present a numerical method for approximating the
solution of nonlinear Fredholm - Hammerstein integral equations of the second
kind as follows:

u(®) = () + a f; Ky (x, Wy (t u(®)dt, (1)

u) = () + B f, Kz (x OW, (6 u(®)dt, @

where f:[0,1] - R, and W;,W,:[0,1] xR >R, a,B € R, and K;,K,:[0,1]> > R
are assumed to be known continuous functions, and the unknown function to be
determined isu: [0,1] —» Rand u € X = C(]0,1]). Also we assume that:

1. f(t) € C(0,1]).

2. K, K, € C([0,1]?), then there exists M;,M, > 0 such that |K;(x,t)| <

M; for i =1,2.

3. Wl,W2 [0,1] X R = R, is a continuous function such thatthere exists

Ly, L, > 0 where Wsatisfy a global Lipschitz condition for x € [0,1] and for

ally, z € R, namely |W;(x,y) — W;(x,z)| < L;|ly — z|,fori = 1,2.

4. M{L; <1,M,L, < 1.
There exist several numerical methods for Fredholm-Hammerstein integral
equations. The classical successive approximations method has been introduced in
[17]. A variation of the Nystrom method was presented in [9]. A collocation-type
method was developed in [8], and cubic spline interpolation is proposed in [4] .
Equation (1) appears in reformulation of two - point BVP with a certain non-linear
boundary condition [1].The numerical solution of nonlinear one-dimensional
Fredholm - Hammerstein integral equations using a basis of Haar functions was
considered by Razzaghi and Ordokhani in [13,14]. The numerical results presented
in that paper show a fast convergence of their method, when applied to integral
equations. The integral operator T: (X, ||. ||) = (X, ]|-]ls) is also defined as

T(u(x) = f() + a [ Ky (e, OW; (L u(®))de, t €[0,1] 3)

T(u(x) = f() + a [, K (e, OW, (L, u(t))de, t € [0,1]. (4)
For all y;,y, € C([0,1]), we have ||Ty; — Ty, || < M||y; — y,||, where M = ML.
Thus the Banach fixed point theorem guarantees that under certain assumptions [1],
T has a unique fixed point; that is, the integral equation (1) has exactly one
solution. Moreover, u = lim,,_,,,T™ (u,), Where u,, is any continuous function on
[0,1]. Since, in general it is not possible to calculate u explicitly from the sequence
of functions {T™(u)},en, We define a new sequence of functions, denoted by
{u;};en,0btained recursively using RH basis. More concretely, we could get
u;,1 from u; approximating T (u,) by means of the sequence of projections of such
RH basis.
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2. Properties of the rationalized Haar functions

Definition 1. The RH wavelet is the function defined on the real line R as follows:
1 0<t<:,

H®) =41 %<t<1,

0  otherwise.
The RH functions h;(t), forany n = 1,2,... where [ = 2" +j, withi = 0,1, ... and

j=0,1,..,2" — 1, are defined by h;(t) = H(2't — j)|[o,1)- That is:

( o A S
1 ].2‘<tS(]+§)2‘,

H(2't—j) = J 1. .
-1 (j +§)2‘1 <t<(+1)27,

0 otherwise.

Also, we define hy(t) = 1, for all t € [0,1),and integer 2¢,i = 0,1, ..., indicates the
level of the wavelet and j = 0,1,...,2¢ — 1 is the translation parameter. Note that
the basic multiplication properties of RH functions are as follows:

ho(t)hy(t) = hy(t)forq € Z* U (0),
and for 0 <[ < q, we have

hq(D)if hy occurs during the positive half wave of h;,

h (Dhg(t) = { —hq (Dif hy occurs during the negative half wave of h;,

0 otherwise.
Also, it can be shown that the sequence{h,,}5—, is a complete orthogonal system in
L?[0,1] .Note that the orthogonality property is :

1 271=q=2"+j,
(0, hy(@) = | hi(@hq(de =11 l=q=0,
0 0 1 # q.
where i€ Z*u(0), and j=0,1,...,2°—1.And for f € C[0,1]the series
>0 27 (f, b))y, converges uniformly to £, (see e.g.. [18]), where
() = [y FOm (D).

Thus the function f(x) inL?([0,1]) can be expanded with finite terms of RH
functions as

fO) = 2% filu() = fTh(x),

where m = 2%*1 that « = 0,1,..., and the RH function coefficients f; are given
by:

)
fi= (hy (0, () ()
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That vectors f and h are defined byf = [fo,fi,-.» fm1]’ and h=
[ho(x), hy(%),..., hy_1(x)]7,and the integral h,(t) is given by
1 1=0,
Jy m(dt = ©)
0 1+0.
Also we have:

Jy h(s) ds = Ph(x), (7)

where P is a m X m operational matrix for integration and is defined by

1 [2mPmm  —Pm m
P — 2 2 2 2
mxm Zm (’15 - :lmxm 0 ]
2 2

wherein @, = [1], Pix1 = [%], and ®,,,is given by 5, while

By = - B - diag [ 1,1,2,2,22,...,22,23,...,23,..,2,.,% | (8)

22 23 ™
2

3. Numerical approximation of the solution

In this paper we have used the successive approximations method of (1), (2),
with initial condition wu, € C[0,1],(usually ( f(x)) .This iterative process will
continue until a suitable error. Which usually occurs in 5t"or 6" iteration. For any
x,t € [0,1],and n > 1 and m = 2™*! € N, we define recursively

Yn—1(x, t): = K1 (x, OW1(t, up—1) (1)), (9)
Pn-1(x, )1 = K3 (x, )W, (L, up—1 (1)) (10)
If Q,,, be an orthogonal projection with following interpolation property we have
Q@) (x,t) = B STt s R (o) by (1),
Om(@)(x,6) = TG I s ki Ry (8).
Or in the matrix form

QW) (x, ) = KT (x)SDh(D), (11)
Om (@) 0) = KT ()SPR(D). (12)
Note that wherein S® = [Sz(!;)] fork =1,2
53 =27 (i, W6, 0), Ry (9)), (13)
s = 27 (), (p(x, 0, hg (D)), (14)
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withi,j = 0,1,...,where
=2/ +kk=01,...,27 -1,
gq=2'+kk'=01,...,2" -1,

and
h(®) = [ho(), hy (®), ..., A1 (O] (15)
Now, by using the RH function vector h(t), the matrix®,,,,is defined as:
=~ 1 3 2m—1
B = [1(5). (57). 0| 10

For example, the first four RH functions can be written in the matrix form as

1 1 1 1 1 1 1 1
/ 1 1 1 1 -1 1 -1 —1\
|1 1 -1 -1 0 0 0 |
& 0 O 0 0 1 1 -1 -
mxm 1 1 0 0 0 0 O 0
0o 0 1 -1 o0 0 0 O
\ 0 0 O 0 1 1 0 0 /
) ) \ 0 0 0 0 0 1 -1
Thus by using this equation we have
)P = (B53m)" - (8)". ((p)mxm k=12, (17)
where (8)" = [s®;] fork=12andij=12...,mas
NYE 2i—-1 2j-1 _
@O, =y (L) =12, (18)
A 2i—-1 2 1
2, =9 (31201 =12, (19)
Thus for the Fredholm Hammerstein mtegral equations we have
1
Un(0): = () + a [ QW) (x,O)dt, n=12,.., (20)
for the Volterra - Hammerstein integral equations we have:
X
u, (x):= f(x) + ,Bfo Om(Pn_)(x,t)dt, n=12,.... (21)

4. Error analysis

In this section, by using the Banach fixed point theorem, we get an upper
bound for the error of the our method, and the order of convergence is analyzed.
Lemma 1. Let W;,W,:[0,1]> x R —» R, be continuous and Lipschitzian with
Lipschitz constant L; and L, and K, K, € €([0,1]%),
be continiouse andM;, M, = 0 such that |K;(x,t)| < M; for i = 1,2, then T has
an unique fixed point and for all u, € C([0,1])

[|lu- Tl(uo)”w < IT(wo) — uollo X 252 ¢, (22)
where g = |a|M;L; < 1,0rq = |B|M,L, < 1 and u is the fixed point of T.

Proof: For the Fredholm Hammerstein integral equations if y,z € €([0,1]), we
have:
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| T(y(x)) = T(z(x))] )
=|a f (Ko Ge W3 (3, £, () — Ky G, OW; (3, £, 2(8)) ) dit |
0

1
< Ialf0 |K1 (x, O] [W1(x, £,y (£)) — Wi(x, t, 2(t))|dt

1
< Myl lal f () — 2(0)]de
0

< MyLqlallly — 2|l
and for the Volterra Hammerstein integral equations if y, z € C([0,1]), we have:

IT(y()) = T(z()]
= ‘3f (|K2(x, OW,(x,t,y(8)) — |K2 (x, OWy(x, t,z(t))) dt
0

<181 [ e 011,67 (0) = W (1,20
0

X
= MszlﬁIf ly(¢) = z(©)|dt < MaLo|Blly = zl|ee.
0

By induction, for the Fredholm - Volterra Hammerstein integral equations and
everyn € N we have

IT"() = T" (2w < q"ly — 2.,
since g < 1 thus we have:
Yn=alIT"() =T"(@) |l < 0.

Thus T has a unique fixed point which means that (3),( 4) has a unique solution and
(22) follows from the Banach fixed-point theorem.
Theorem 1. Let W,;,W,:[0,1]> x R - R, be continuous and Lipschitzian with
Lipschitz constants L, and L,, K;,K, € C([0,1]?), be continuous and M;,M, >
0 such that |K;(x,t)| < M; for i = 1,2, then T has an unique fixed point and for all
uy € €([0,1])

||u - Ti(uo)lloo < T (o) — upllee X X5=; q’, (23)
where g = |a|M;L; < 1,0rq = |B|M,L, < 1 and u is the fixed point of T.
Proof. If L;,_; = max{ ”aw"‘1 , ”01!;5_1 }, for the Fredholm Hammerstein

at
3y 3
Lizy ”& Mor the Volterra
ot ds g

Hammerstein integral equationsand m = 2t such that i = 0,1,...,then
1

[ $ia60) - Qnpi D @0)de
0

< lallii-1 = @u@Wi- s

integral equations, or L;_; = max{ ”

IT (1) = will < la

0

for Fredholm Hammerstein integral equations and for Volterra Hammerstein
integral equations we have
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T (uiz1) — Uil < |ﬁ|||f;c @i—1(t,x) — Qm(@i—1) (L, x)dt”OO < Blllpi—1 —

Qm(¢i—1)”oo .
If we define g(t,s):=v¥;_1 — @ (¥;_1), and interpolate property and the mean-

value theoremfor two variables with t, = 0, and

1 2]
b= g Ty

1 v,
Sj = Zngei T omg

where i = 2™ + v;,j = 2™ + v,,nq,n, = 1,i,j <m— 1, we have
ag ag
pes = Cmi DIl = |9t 57) + 52 ENE =)+ 52 EN(r = 5)|

H(l 0m) "“ e + (-0t "" LD maxtie — il lly = s51,3

ll)l 1({]’)"‘ lpl 1

s;na - Q.

similarly it holds for ¢;_; thus we have

4L;_
IT(ui-1) — uillo < || Y , (24)
or
4-L, 1
T (ui—1) — uille < 1Bl —7 (25)
If || 222 < g0r |ﬁ| bt < g, fork = 1,2, .., 4, that £1,€5,...,& >0 for i >
1, we have
T (uizq) —uille < g (26)

Applying the triangle inequality and we achieve w
lu = wlloe < = T Cuodl + Zhoq ¢ ||T(wime) — | (27)
From (22) and (27) we conclude
llu = willoo < T (ug) = wollow B=; 47 + Xj=1 0" & .(28)
Sinceg; > 0 for1 < j< i—1,and|q/ <1 and

Z;ii qj =

then

lu =yl < od,
which
_ IT(uo)—uoll
e
thus the order of convergence is 0(q').
It should be noted that some of the following theorems and lemmas in this section
has been proved for other bases, but we proved for rationalized Haar wavelets in a

different way.

5. Numerical examples
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In this section by using the method presented in (20), (21) are solved some
examples from different references. The main characteristic of this technique is that
does not lead to a nonlinear algebraic equations system. The following algorithm,
based on the method presented in Section3, has been used to solve Examples 1 to
3.

Algorithm 1

1. Produce matrices h(t), Dypxm, andP.

2. Fori = 1to k do,

3. Product Matrix S, $ for k = 1,2 from(13), (14), (17) and (18).

4. Compute Q,,, (¥ ) (x, t) or Qp () (x,t) from (11) or (12).

5. Compute u;(t) from (20) or (20) for the assumed point.

6. Go to step 2.

Example 1. Let us consider the nonlinear Fredholm Hammerstein integral equation
of the second kind

u(t) = £ + f; (B2 uP(s)ds, (¢ € [0,1), (29)
where for t € [0.1]

f) = %(8cos(t) + 2sin()sin(t) + cos(1)3cos(t) + cos(1)%sin(1)sin(t)), (30)
with u(0) = 0, and K(t,s) = §sin(s —t),W(s,u(s)) = u?(s). The exact solution
isu(t) = cos(t).

The comparison between the approximate solutions obtained byHaar
wavelet method and Schauder bases method [2] is given in Tablel. There is a good
agreement between these methods. In Fig. 1, we have showna comparison between
the approximate solution with the exact solution. Inthis example the run time for
m = 128 is about 0.612 seconds.

Table 1. Numerical results for Example 1

t; Schauder bases [2] Presented method Presented method

With j = 33 Withm = 2° Withm = 27
0.24609375 2.64x 1077 891 x107* 3.73x10°¢
0.37109375 2.72x 107 9.15 x 10~* 3.03x10°¢
0.49609375 2.76 x 107° 9.25 x 10~* 2.28 x 107
0.62109375 8.76 x 10~° 9.20 x 10~* 1.49 X 107
0.74609375 2.72 X 1075 9.02 x 10~* 6.87 X 1077
0.87109375 2.63 X 1075 8.69 x 10~* 1.33 x 1077
0.99609375 2.50 X 1075 8.22x107* 9.52 x 1077
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exact solution
— - approximate solution
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Figure 1: Comparison of exact and approximate solutions for Example 1

Example 2. Let us consider the nonlinear Fredholm integral equation of the second
kind

u() = et +3ett = [l I A ()ds e e [01], ()

where u(0) = 0 and K(¢,s) = iet‘“‘l, W (s,u(s)) = u3(s) and exact solution
is u(t) = et. In Table 2, the absolute error in the node t; € [0,1] is shown. In the
Table below, the exact solution u, byanswering repetitive u;, can be approximated.
Furthermore, the number used to represent the four pillars of m is also shown. In

Fig.2, a comparison between analytical and approximate solutions is shown with a
total run time about 2.078 seconds.

Table 2.Numerical results for Example 2

t; Our method Our method Our method
Withm = 25 Withm = 2° Withm = 27
0.24609375 1.84x 1073 227 x107* 493 x107°
0.37109375 2.09 x 1073 257 x107* 5.58 x 10~°
0.49609375 2.37 x1073 2.91x107* 6.32x 107°
0.62109375 2.69 x 1073 3.30 x 107* 7.17 x 1075
0.74609375 3.04 x 1073 3.74 x 107* 8.13x107°
0.87109375 3.45x%x 1073 4.24x107* 9.21x107°
0.99609375 3.91x 1073 481 x10™* 1.04 x 107
Run time (s) 0.063 0.360 1.5
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exact solution
—— - approximate solution
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0 01 02 03 04 05 06 07 08 09
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Figure 2: Comparison of exact and approximate solutions for Example 2

Example 3. Let us consider the nonlinear Volterra Hammerstein integral equation
of the second kind

u(t) = f(t) + fotgarctan(u(s))ds, (32)

where
(&) = t — 2 G t*arctan(t) — -3+t — arctan(t)),

2
and u(0) =0, W(s,u(s)) = szarctan(u(s)), K(t,s) = %s, and the exact
solution is u(t) = t.

The comparison between the approximated solutions obtained bythe Haar
wavelet method, collocation-type method [8] and Legendrewavelets method [3] is
given in Table 4. We see that there is agood agreement of results between these
three methods. This fact justifiesthe ability, efficiency and applicability of the
present method. In Fig. 3, comparison between analytical and approximated
solutions is shown. The runtime for m = 128 is about 11.797 seconds.

Table 3. Numerical results for Example 3

t; collocation-type Legendre wavelets Presented method
method[8] method[3] Withm = 27
With N = 65 Withk=1,M =6

0.12109375 1.68 x 107 6.90 x 10~° 3.10 x 1071
0.24609375 1.44 x 1075 5.36 x 1077 9.01 x 107°
0.37109375 1.78 x 1075 6.39 X 10~ 6.72 x 1078
0.49609375 1.02 x 10™* 3.61 x 1075 2.75 x 1077
0.62109375 3.90 x 1074 1.35x 1075 8.14 x 1077
0.74609375 1.14 x 1073 3.96 x 107 1.98 x 107
0.87109375 2.81 x 1073 9.67 X 107° 431 x10°°
0.99609375 6.07 x 1073 2.07 X 1075 8.82x 10~°
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Figure 3: Comparison of exact and approximate solutions for Example 5.4
6. Conclusions

In this paper, we have used a numerical method which approximated the solution
of the nonlinear Fredholm-Hammerstein integral equation (1) and nonlinear
Volterra-Hammerstein integral equation (2)based on the expansion of the solution
as series of Haar functions. These methods are not require the solutions of
algebraic systems, we used the successive method for approximations of (1) and

2).
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Xatanin tahlili ilo qeyri-xatti Volter-Fredholm - Hammersteyn inteqral

tonliklorinin taqribi halli ii¢ciin RH veyvlet bazis iisulu
Macid Erfanian, Murtuza Gagpazan, Huseyn Beiglo
XULASO

Bu moqalodo Volter-Fredholm-Hammersteyn inteqral tonliklorinin  odadi

approksimasiyasiin hesablanmasi {igiin rasional Haar veyvletlorin xassolorindon istifado
edon tisul verilmigdir . Xotalarin tohlili iigiin asas vasits torpenmoz ndqts haqqindaki Banax
teoremidir. Xota li¢iin yuxari sorhad tapilmisdir vo yi1gilmanin tortibi tohlil olunur. Bozi
adoadi misallar ii¢lin hallin hesablanmasi alqoritmi verilmisdir.

Acar sozlor: geyri-xatti inteqral tonlik; Rasionallagdirilmig Haar veyvleti; ©Omali
matris; tarpanmoaz ndqts haqqinda teoremlor; Xatalarin tohlili
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PX BeiiBier0a3nc MeTox NPUOINKEHHOTO PellleHUs] HeJJMHeHHbIX
HHTEerpaJIbHbIX YpaBHeHul BoabTeppa — @pearosbsma -I'ammepmreiina ¢
aHAJIN30M OIIUOOK

Memxua dpdanunan, Mypry3a I'aunasan, I'yceiin beur.io

PE3IOME

B sT0ii cTathe mpencTaBieH METOI s Pacue€THOM YMCIEHHOW allpOKCUMAalUU
HENTMHEWHBIX (PPEATOIBMOBEIX HWHTETPANbHBIX ypaBHeHUIT Bombreppa XammepinTeiiHa,
KOTOPBIIl HUCIONB3yeT CBOMCTBA PalMOHAIM3MPOBAaHHBIX BeWBIETOB Xaapa. OCHOBHBIM
MHCTPYMEHTOM JUIS aHaJIM3a OIIMOOK SBISIETCS TeopeMa baHaxa o HENMOJBIKHOM TOUKe.
BepxHss rpaHuna uis OmMOKM OBUT MONYyYEH U MOPSAAOK CXOJUMOCTH aHaIM3HPYETCs.
IIpencraBiaeHbl anropuTM BBIYMCICHHSA W WIUIIOCTUPALMU PELICHHS I HEKOTOPBIX
YHCIOBBIX IPHUMEPOB.

KiroueBble cioBa: HeNMHEHHOE HHTErpajgbHOE YpaBHEHHE, PALMOHAIN3UPOBAHHBII
BeiiBner Xaapa, ornepaTHBHAs MaTPHLA, TEOPEMbI O HEIIOABMKHOW TOUKE, aHAJIM3 OIIHOOK.
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